Flanking sequences with an essential role in hydrolysis of a self-cleaving group I-like ribozyme.

نویسندگان

  • C Einvik
  • H Nielsen
  • R Nour
  • S Johansen
چکیده

DiGIR1 is a group I-like ribozyme derived from the mobile twin ribozyme group I intron DiSSU1 in the nuclear ribosomal DNA of the myxomycete Didymium iridis. This ribozyme is responsible for intron RNA processing in vitro and in vivo at two internal sites close to the 5'-end of the intron endo-nuclease open reading frame and is a unique example of a group I ribozyme with an evolved biological function. DiGIR1 is the smallest functional group I ribozyme known from nature and has an unusual core organization including the 6 bp P15 pseudoknot. Here we report results of functional and structural analyses that identify RNA elements critical for hydrolysis outside the DiGIR1 ribozyme core moiety. Results from deletion analysis, disruption/compensation mutagenesis and RNA structure probing analysis all support the existence of two new segments, named P2 and P2.1, involved in the hydrolysis of DiGIR1. Significant decreases in the hydrolysis rate, k (obs), were observed in disruption mutants involving both segments. These effects were restored by compensatory base pairing mutants. The possible role of P2 is to tether the ribozyme core, whereas P2.1 appears to be more directly involved in catalysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eukaryotic Penelope-Like Retroelements Encode Hammerhead Ribozyme Motifs

Small self-cleaving RNAs, such as the paradigmatic Hammerhead ribozyme (HHR), have been recently found widespread in DNA genomes across all kingdoms of life. In this work, we found that new HHR variants are preserved in the ancient family of Penelope-like elements (PLEs), a group of eukaryotic retrotransposons regarded as exceptional for encoding telomerase-like retrotranscriptases and spliceos...

متن کامل

Circular ribozymes generated in Escherichia coli using group I self-splicing permuted intron-exon sequences.

A circularly permuted self-splicing group I intron from Anabaena was used to generate covalently closed circular trans-acting ribozymes in Escherichia coli. The RNA component of Bacillus subtilis RNaseP and an artificial trans-acting hepatitis delta virus ribozyme were expressed as the exon portion of the permuted intron. RNA isolated from these cells contained circular forms of the ribozymes, ...

متن کامل

Targeted cleavage: tuneable cis-cleaving ribozymes.

P osttranscriptional regulation of gene expression has become a popular method for studying gene function and elucidating networks of gene expression. A number of tools are available that allow investigators to regulate gene expression posttranscriptionally, including RNAi, antisense oligonucleotides, DNAzymes, and ribozymes (1). Each of these methods relies on complementary basepairing between...

متن کامل

In vitro selection of a purine nucleotide-specific hammerheadlike ribozyme.

The in vitro selection for an intramolecular AUG-cleaving hammerhead-like ribozyme is described. One of the ribozymes selected was found to cleave after this triplet, both intramolecularly and intermolecularly, with rates comparable to the rate of the native GUC-cleaving hammerhead ribozyme. Although the selection was designed for cleavage 3' of the AUG triplet, the ribozyme also cleaves 3' of ...

متن کامل

Generation of circular RNAs and trans-cleaving catalytic RNAs by rolling transcription of circular DNA oligonucleotides encoding hairpin ribozymes

A simple new strategy for the in vitro synthesis of circular RNAs and hairpin ribozymes is described. Circular single-strand DNA oligonucleotides 67-79 nt in length are constructed to encode both hairpin ribozyme sequences and ribozyme-cleavable sequences. In vitro transcription of these small circles by Escherichia coli RNA polymerase produces long repeating RNAs by a rolling circle mechanism....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 28 10  شماره 

صفحات  -

تاریخ انتشار 2000